Statistics 1 – Normal Distribution and Confidence Intervals Exam Questions Pack A

- 4 A company has three machines, I, II and III, each producing chocolate bar ice creams of a particular variety.
 - (a) Machine I produces bars whose weights are normally distributed with a mean of 48.1 grams and a standard deviation of 0.25 grams. Determine the probability that the weight of a randomly selected bar is less than 47.5 grams. (3 marks)
 - (b) Machine II produces bars whose weights are normally distributed with a standard deviation of 0.32 grams. Given also that 85 per cent of bars have weights below 50.0 grams, determine the mean weight of bars. (4 marks)
 - (c) From a random sample of 36 bars, selected at random from those produced on Machine III, calculations gave a mean weight of 52.46 grams and an unbiased estimate of the population variance of 0.1764 grams².
 - (i) Construct a 95% confidence interval for the mean weight of bars produced on Machine III, giving the limits to two decimal places. (4 marks)
 - (ii) Name the theorem that you have used and explain why it was applicable in this case. (2 marks)
- 7 (a) Machine *A* produces plastic balls which have diameters that are normally distributed with a mean of 10.3 cm and a standard deviation of 0.16 cm.
 - (i) Determine the proportion of balls which have diameters less than 10.5 cm.

(3 marks)

- (ii) Calculate the diameter exceeded by 75 per cent of balls. (4 marks)
- (b) Machine *B* produces beach balls which have diameters that are normally distributed with a mean of μ cm and a standard deviation of 0.24 cm.

The diameter, $d \, \mathrm{cm}$, of each ball in a random sample of 144 beach balls was measured. This gave:

$$\sum d = 3585.6.$$

- (i) Calculate an unbiased estimate of μ . (1 mark)
- (ii) Calculate the standard error of your unbiased estimate. (2 marks)
- (iii) Construct a 95% confidence interval for μ , giving its limits to two decimal places. (4 marks)
- (iv) Hence state, with a reason, whether you agree with a claim that $\mu = 25$. (2 marks)

3 Pencils produced on a certain machine have lengths, in millimetres, which are normally distributed with a mean of μ and a standard deviation of 3.

A random sample of 16 pencils was taken and the length, x millimetres, measured for each pencil, giving

$$\sum x = 2848.$$

- (a) State why \overline{X} , the mean length, in millimetres, of a random sample of 16 pencils produced on the machine, is normally distributed. (1 mark)
- (b) Construct a 99% confidence interval for μ . (5 marks)
- 1 The weight, in grams, of Italian grated cheese in cartons may be assumed to be normally distributed with mean μ and standard deviation 1.6.

From a random sample of 64 such cartons, the mean weight of grated cheese per carton is found to be 80.8 grams.

Construct a 95% confidence interval for μ .

- **5** The contents of each of a random sample of 100 cans of a soft drink are measured. The results have a mean of 331.28 ml and a standard deviation of 2.97 ml.
 - (a) Show that an unbiased estimate of the population variance is 8.91 ml^2 . (2 marks)
 - (b) Construct a 99% confidence interval for the population mean, giving the limits to two decimal places. (4 marks)
 - (c) Explain why, in answering part (b), an assumption regarding the distribution of the contents of cans was **not** necessary. (2 marks)
- 4 (a) The volume, X millilitres, of olive oil in one-litre bottles may be assumed to be a normally distributed random variable with mean μ_X and standard deviation 3.
 - (i) Assuming that $\mu_X = 1005$, determine the probability that the volume of olive oil in a randomly selected bottle is less than 1010 ml. (3 marks)
 - (ii) Find, to the nearest integer, the value of μ_X so that at most 1% of bottles contain less than 1 litre of olive oil. (4 marks)
 - (b) The volume, Y millilitres, of sunflower oil in one-litre bottles may be assumed to be a normally distributed random variable with mean μ_Y and standard deviation 3.

The volume, y millilitres, of sunflower oil in each of a random sample of 16 bottles was measured, with the result that

$$\sum y = 16\,136\,.$$

Construct a 95% confidence interval for μ_Y , giving the limits to the nearest integer. (5 marks)

(4 marks)

- 7 The volume, X millilitres, of hand cream in tubs is normally distributed with mean μ and variance σ^2 .
 - (a) From a random sample of 50 tubs, the following information was determined, where \overline{x} denotes the sample mean.

$$\sum x = 25\,065$$
 and $\sum (x - \overline{x})^2 = 384.16$

- (i) Construct a 99% confidence interval for μ , giving the limits to two decimal places. (6 marks)
- (ii) State why, in answering part (a)(i), you did **not** need to use the Central Limit Theorem. (1 mark)
- (b) It is proposed that, from a second random sample of 50 tubs, **both** a 99% confidence interval and a 90% confidence interval for μ be constructed.

State the probability that **neither** of these confidence intervals will contain μ . (1 mark)

(c) It is also proposed that, from a third random sample of 50 tubs, a 99% confidence interval for μ be constructed and that, from a fourth, independent, random sample of 50 tubs, a 90% confidence interval for μ be constructed.

Find the probability that **neither** of these confidence intervals will contain μ . (2 marks)

5 An internet service provider operates a telephone helpdesk. The random variable T denotes the duration, in minutes, of a telephone call to the helpdesk. The internet service provider recorded the duration, t minutes, of each of a random sample of 50 telephone calls.

From the recorded durations of these telephone calls, the following values were calculated, where \overline{t} denotes the sample mean.

$$\sum t = 143.50 \qquad \qquad \sum (t - \bar{t})^2 = 279.8929$$

- (a) Calculate an unbiased estimate of Var(T) and hence estimate the standard error of \overline{T} . (3 marks)
- (b) (i) Construct a 99% confidence interval for the mean duration, μ minutes, of telephone calls to the helpdesk. (5 marks)
 - (ii) Hence comment on the claim that $\mu = 3.5$. (2 marks)
- (c) Three months later, from a random sample of 100 telephone calls, a 99% confidence interval for μ was determined correctly as (4.12, 5.38).

Indicate, giving reasons, what may now be concluded about the value of μ . (2 marks)

5 A machine produces steel rods with lengths that are normally distributed with mean μ and variance σ^2 .

A quality control inspector uses a gauge to measure the length, x centimetres, of each rod in a random sample of 100 rods from the machine's production. The summarised data are as follows.

$$\sum x = 1040.0 \qquad \sum x^2 = 11\,102.11$$

- (a) Calculate unbiased estimates of μ and σ^2 . (3 marks)
- (b) Construct a 99% confidence interval for μ . (4 marks)
- (c) State why, in answering part (b), you did **not** need to use the Central Limit Theorem. *(1 mark)*
- (d) The gauge used to measure the length is faulty. As a consequence, each measurement taken is 0.2 cm more than the true length.

Use this additional information to write down a revised confidence interval for μ . (2 marks)

- 1 Each morning, Mustafa either cycles or walks to school.
 - (a) The time, X minutes, taken by Mustafa to cycle to school may be modelled by a normal random variable with mean 12 and standard deviation 2.5.

Determine:

(i)
$$P(X < 15)$$
; (2 marks)

(ii)
$$P(10 < X < 15)$$
. (3 marks)

(b) On each of a random sample of 50 mornings, Mustafa records his time, y minutes, to walk to school. From his recordings, Mustafa calculates the following quantities, where \overline{y} denotes the sample mean.

$$\sum y = 835.0$$
 $\sum (y - \overline{y})^2 = 533.61$

- (i) Construct a 99% confidence interval for the mean time taken by Mustafa to walk to school. *(6 marks)*
- (ii) Mustafa suspects that, on average, the time he takes to walk to school is more than 25% longer than the time he takes to cycle to school.

State, with reasons, whether this suspicion is supported by your confidence interval. (3 marks)

Question Number & Part	Solution	Marks	Total Marks	Commentary
4 (a)	$I \sim N(48.1, 0.25^2)$			
	이 이 물건은 것 같은 것	an shi sha Anga		
	P(W < 47.5) = (47.5 - 48.1)	M1		standardising (47.45, 47.5, 47.5)
	$P\left(Z < \frac{47.5 - 48.1}{0.25}\right) =$			(accept $\sqrt{\sigma}$, σ^2 , μ - w)
	P(Z < -2.4) = 1 - P(Z < 2.4)	ml		area change
	P(2 < -2.4) = 1 - P(2 < 2.4)	INT .		
	= <u>0.008</u>	A1	(3)	awrt
(b)				
	$\underline{\text{II}} \sim N(\mu, 0.32^2)$			
	P(W < 50) = 0.85			standardising (49.5,
2. A 1999	$\therefore \qquad \mathbb{P}\left(\mathbb{Z} < \frac{50 - \mu}{0.32}\right) = 0.85$	M1		50, 50.5)
5	(0.32)	i di sedi ter		(accept $\sqrt{\sigma}$, σ^2 , μ - w)
	0.85 ⇒ z = <u>1.036</u>	B1		awrt 1.04
	50 - u			
	$\therefore \frac{50 - \mu}{0.32} = 1.036$	m1		equating two z-values (m0 for 0.80234)
	∴ µ = <u>49.7</u>	A1		awrt
(c)			(4)	
(i)	95% ⇒ z = <u>1.96</u>	B1		cao
	C I for μ is			
	$\overline{\mathbf{x}} \pm \mathbf{z} \times \frac{\mathbf{s}}{\sqrt{n}}$			use of
	√n	Ml		use or
n an an Anna a Anna an Anna an	:. 52.46 ± 1.96 × $\frac{\sqrt{0.1764}}{\sqrt{5}}$	A1√		substitution, √ on z
	$\therefore 52.46 \pm 1.96 \times \frac{\sqrt{0.1764}}{\sqrt{36}}$	ALV		(not 0.1764 or 0.1764 ²)
	∴ 52.46 ± 0.14			
	••• J2.地O 上 U.1地			
	∴ <u>(52.32, 52.60)</u>	A1		awrt accept (52.3, 52.6)
			(4)	
(ii)	Central Limit Theorem			
e efference Liste Austren	이는 물건이 가지 않는 물건이 가지 않는다.	B1		n de la servición de la servic
	Sample size sufficiently large (with reference to $\overline{X} \sim N$)	E1		El for this alone
상에 가지 말할 사람이 있는 말			(2)	E0 for additional wrong reason
			[13]	

Statistics 1 – Normal Distribution and Confidence Intervals Exam Questions Pack A Mark Scheme

7 (a) $A \sim N(10.3, 0.16^2)$	Q	Solution	Marks	Total	Comments
(i) $P(A < 10.5) = P\left(Z < \frac{10.5 - 10.3}{0.16}\right)$ M1 standardising 10.45, 10.5, 10.55 with σ^2 , $\sqrt{\sigma}$ and/or $(\mu \cdot x)$ $= P(Z < 1.25) =$ A1 CAO ± 1.25 $0.89 (435)$ A1 3 AWRT (ii) $P(A > a) = 0.75$ B1 AWFW $(\pm)0.674$ to ± 0.675 $\Rightarrow z = -0.6745$ B1 AWFW $(\pm)0.674$ to ± 0.675 for 0.63 or 0.68) $a = 10.3$ $a = -0.6745$ m1 equating two z-values (m0 for using 1-z-value) $a = 10.2$ A1 4 AWRT (b)(i) $\hat{\mu} = \bar{x} = 24.9$ B1 1 CAO (ii) SE($\hat{\mu}) = \frac{\sigma}{\sqrt{n}} =$ M1 accept with 0.16, 0.16^2, $\sqrt{0.16}$) (M0 for bias correction) (iii) SE($\hat{\mu}) = \frac{\sigma}{\sqrt{n}} =$ M1 CAO (M0 for bias correction) (iii) $95\% \Rightarrow z = 1.96$ B1 CAO (M0 for bias correction) (iiii) $95\% \Rightarrow z = 1.96$ B1 CAO (M0 for bias correction) (iiii) $95\% \Rightarrow z = 1.96$ B1 CAO (M0 for bias correction) (iv) As 95% CI excludes 25 B1/ γ γ on (i) and (ii) $24.86, 24.94$					
(ii) $0.89 (435)$ A13AWRT(iii) $P(A > a) = 0.75$ B1AWFW (± 0.674 to ± 0.675 (not 0.67 or 0.68) standardising value with σ , σ^2 , $\sqrt{\sigma}$ and/or ($\mu \rightarrow x$) $\Rightarrow \frac{a - 10.3}{0.16} = z$ M1AWFW (± 0.675 (not $0.67 \circ 0.68$) standardising value with σ , σ^2 , $\sqrt{\sigma}$ and/or ($\mu \rightarrow x$) $\Rightarrow \frac{a - 10.3}{0.16} = -0.6745$ m1equating two z-values (m0 for using $1 - z$ -value) $a = 10.2$ A14AWRT(b)(i) $\mu = \bar{x} = 24.9$ B11CAO (B0 for bias correction) use of (σ , σ^2 , $\sqrt{\sigma} + (n, \sqrt{n})$ with $n > 1$ (accept with $0.16, 0.16^2, \sqrt{0.16}$) (M0 for bias correction)(iii)SE($\hat{\mu}) = \frac{\sigma}{\sqrt{n}} =$ M12(iii) 0.02 Cannot gain (i) and (ii) from (iii) $95\% \Rightarrow z = 1.96$ Cl for μ is $\hat{\mu} \pm z \times SE(\hat{\mu})$ B1 M1CAO use of; must have used $n > 1$ in (ii) $\hat{\mu} = 24.9 \pm 1.96 \times 0.02$ $\therefore 24.9 \pm 1.96 \times 0.02$ $\therefore 24.9 \pm 0.04$ A1 $\sqrt{2}$ $\sqrt{2}$ on (i) and (ii) $4.1 \sqrt{2}$ A14AWRT(iv)As 95% CI excludes 25 Disagree with claimB1 $\sqrt{2}$ EI $\sqrt{2}$ $\sqrt{2}$ on (iii) $\sqrt{2}$ on (iii); dep on B1 $\sqrt{2}$			M1		standardising 10.45, 10.5, 10.55 with σ σ^2 , $\sqrt{\sigma}$ and/or (μ - x)
(ii) $P(A > a) = 0.75$ $\Rightarrow z = -0.6745$ $B1$ $AWFW (\pm)0.674 \text{ to } \pm 0.675$ $(\text{not } 0.67 \text{ or } 0.68)$ $(\text{standardising value with } \sigma, \sigma^2, \sqrt{\sigma}$ $(\text{and/or } (\mu \cdot x))$ $\Rightarrow \frac{a - 10.3}{0.16} = -0.6745$ $a = 10.2$ $A1$ $A1$ A $AWRT$ (b)(i) $\hat{\mu} = \bar{x} = 24.9$ $B1$ 1 CAO $(B0 for bias correction)$ $use of (\sigma, \sigma^2, \sqrt{\sigma} \div (n, \sqrt{n}) \text{ with } n > 1) (accept with 0.16, 0.16^2, \sqrt{0.16}) (M0 for bias correction) CAO (M0 for bias correction) (M1 (24.86, 24.94 A1 A1 A1 A1 A AWRT (V) As 95\% C1 excludes 25 B1\sqrt{P} E1\sqrt{P} 2 \sqrt{P} on (iii) \sqrt{P} on (iii) Daly mark if C1 of the form (a,b) with a$		= P(Z < 1.25) =	A1		CAO ± 1.25
$\begin{vmatrix} \Rightarrow z = -0.6745 \\ a - 10.3 \\ \hline 0.16 = z \\ \Rightarrow \frac{a - 10.3}{0.16} = z \\ \Rightarrow \frac{a - 10.3}{0.16} = z \\ \Rightarrow \frac{a - 10.3}{0.16} = -0.6745 \\ a = 10.2 \\ (b)(i) \hat{\mu} = \bar{x} = 24.9 \\ (ii) SE(\hat{\mu}) = \frac{\sigma}{\sqrt{n}} = \\ 0.02 \\ \hline Cannot gain (i) and (ii) from (iii) \\ (iii) SE(\hat{\mu}) = \frac{1}{\sqrt{n}} = \\ 0.02 \\ \hline Cannot gain (i) and (ii) from (iii) \\ (iii) S5\% \Rightarrow z = 1.96 \\ C1 \ Gr \ \mu \ is \ \hat{\mu} \pm z \times SE(\hat{\mu}) \\ \therefore 24.9 \pm 1.96 \times 0.02 \\ \therefore 24.9 \pm 0.04 \\ 24.86, 24.94 \\ (iv) As 95\% \ CI \ excludes 25 \\ Disagree \ with \ claim \\ Only mark \ if \ CI \ of \ the form (a,b) \ with a \\ \end{vmatrix}$		0.89 (435)	A1	3	AWRT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	$\mathbf{P}(A > a) = 0.75$			
$\begin{vmatrix} a - 10.3 \\ 0.16 \\ = z \\ add or (\mu - x) \end{vmatrix}$ standardising value with σ , σ^2 , $\sqrt{\sigma}$ and/or $(\mu - x)$ equating two z-values (m0 for using 1-z-value) $a = 10.2$ A1 4 AWRT (b)(i) $\hat{\mu} = \bar{x} = 24.9$ B1 1 CAO (B0 for bias correction) use of $(\sigma, \sigma^2, \sqrt{\sigma}) + (n, \sqrt{n})$ with $n > 1$ (accept with 0.16, 0.16 ² , $\sqrt{0.16}$) (M0 for bias correction) CAO (B0 for bias correction) (CAO (CAO (CAO (CAO (CAO (CAO (CAO (CAO		$\Rightarrow z = -0.6745$	B1		
$\Rightarrow \frac{1}{0.16} = -0.6745$ $a = 10.2$ $A1$ $A1$ $A1$ $A1$ $A1$ $AWRT$ $A1$ $A1$ $AWRT$ $A1$ $A1$ $AWRT$ $A1$ $A1$ $A1$ $AWRT$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$		$\frac{a-10.3}{0.16} = z$	M1		standardising value with σ , σ^2 , $\sqrt{\sigma}$
(b)(i) $\hat{\mu} = \bar{x} = 24.9$ B11CAO (B0 for bias correction) use of $(\sigma, \sigma^2, \sqrt{\sigma}) \div (n, \sqrt{n})$ with $n > 1$ (accept with 0.16, 0.16², $\sqrt{0.16}$) (M0 for bias correction) CAO(iii) $95\% \Rightarrow z = 1.96$ CI for μ is : $\hat{\mu} \pm z \times SE(\hat{\mu})$ B1 M1CAO use of ($\sigma, \sigma^2, \sqrt{\sigma}$) ÷ (n, \sqrt{n}) with $n > 1$ (accept with 0.16, 0.16², $\sqrt{0.16}$) 		$\Rightarrow \frac{a-10.3}{0.16} = -0.6745$	m 1		
(ii) $SE(\hat{\mu}) = \frac{\sigma}{\sqrt{n}} =$ $(B0 \text{ for bias correction})$ $Use of (\sigma, \sigma^2, \sqrt{\sigma}) \div (n, \sqrt{n}) \text{ with } n > 1 (accept with 0.16, 0.16^2, \sqrt{0.16}) (M0 \text{ for bias correction}) CAO Cannot gain (i) and (ii) from (iii) 95\% \Rightarrow z = 1.96 CI \text{ for } \mu \text{ is } : \hat{\mu} \pm z \times SE(\hat{\mu}) \therefore 24.9 \pm 1.96 \times 0.02 \therefore 24.9 \pm 0.04 A1 \sqrt{10} A1 \sqrt{10}$		<i>a</i> =10.2	A1	4	AWRT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(b)(i)	$\hat{\mu} = \overline{x} = 24.9$	B1	1	
(iii) 0.02 Cannot gain (i) and (ii) from (iii)A12(M0 for bias correction) CAO(iii) $95\% \Rightarrow z = 1.96$ Cl for μ is : $\hat{\mu} \pm z \times SE(\hat{\mu})$ B1 M1CAO use of; must have used $n>1$ in (ii) $\therefore 24.9 \pm 1.96 \times 0.02$ $\therefore 24.9 \pm 0.04$ A1 \checkmark Λ \checkmark on (i) and (ii) $24.86, 24.94$ A14AWRT(iv)As 95% CI excludes 25 Disagree with claimB1 \checkmark E1 \checkmark 2 \checkmark on (iii) \checkmark on (iii)Only mark if CI of the form (a,b) with a \square \square \checkmark on (iii); dep on B1 \checkmark	(ii)	$SE(\hat{\mu}) = \frac{\sigma}{\sigma} =$	M1		
CI for μ is : $\hat{\mu} \pm z \times SE(\hat{\mu})$ M1use of; must have used $n > 1$ in (ii) $\therefore 24.9 \pm 1.96 \times 0.02$ $\therefore 24.9 \pm 0.04$ $A1$ $$ on (i) and (ii)24.86, 24.94A14AWRT(iv)As 95% CI excludes 25 Disagree with claim $B1$ $E1$ 2Only mark if CI of the form (a,b) with a 2		0.02	Al	2	(M0 for bias correction)
$\therefore 24.9 \pm 1.96 \times 0.02$ $\therefore 24.9 \pm 0.04$ $A1$ $$ on (i) and (ii) $24.86, 24.94$ $A1$ 4 AWRT(iv)As 95% CI excludes 25 Disagree with claim $B1$ $E1$ 2 $$ on (iii) $$ on (iii); dep on $B1$	(iii)		B1		CAO
$\therefore 24.9 \pm 0.04$ $A1$ $$ on (i) and (ii) $24.86, 24.94$ $A1$ 4 AWRT(iv)As 95% CI excludes 25 Disagree with claim $B1$ $E1$ 2 $$ on (iii) $$ on (iii); dep on $B1$ Only mark if CI of the form (a,b) with a $a1$ $a1$ $a1$		CI for μ is: $\hat{\mu} \pm z \times SE(\hat{\mu})$	M1		use of; must have used <i>n</i> >1 in (ii)
(iv) As 95% CI excludes 25 Disagree with claim Only mark if CI of the form (a,b) with a B 1 E 1 2 on (iii) on (iii); dep on B 1			A1√		on (i) and (ii)
Disagree with claim $E1$ 2 $$ on (iii); dep on $B1$ Only mark if CI of the form (a,b) with a a		24.86, 24.94	Al	4	AWRT
	(iv)			2	
Total 16		Total		16	

3	(a)	Length, $X \sim Normal$	E1	1	OE; not CLT or σ known
	(b)	$\hat{\mu} = \overline{x} = \frac{1}{n} \sum x = \frac{2848}{16} = 178$	B1		CAO
		CI: $\overline{x} \pm \frac{z\sigma}{\sqrt{n}}$	M1		Use of with <i>n</i> >1
		$99\% \implies z = 2.5758$	B1		AWFW 2.57 to 2.58
		Thus CI is $178 \pm \frac{2.5758 \times 3}{\sqrt{16}}$	A1√		$\sqrt{\text{on }\overline{x}}$ and z ; not on n
		Thus CI is 178 ± 1.9 or (176,180)	A1	5	AWRT; dependent upon fully correct expression
		Total		6	

Q		Solution	Marks	Total	Comments
1		Weight $X \sim N(\mu, 1.6^2)$			
		$95\% \implies z = 1.96$	B1		CAO
		CI for μ is: $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		use of; must have \sqrt{n} ($n > 1$)
	<i>.</i>	$80.8 \pm 1.96 imes rac{1.6}{\sqrt{64}}$	A1√		$$ on z; allow 1.6 ² or $\sqrt{1.6}$ but must be $\sqrt{64}$ or 8
	<i>:</i> .	80.8 ± 0.392			
	<i>:</i> .	(80.4, 81.2)	A1	4	AWRT
					NB attempt at changing $\sigma \ or \sigma^2$ to
					unbiased \Rightarrow at most B1 M1
		Total		4	

	Q	Solution	Marks	Total	Comments
5	(a)	Unbiased estimate of σ^2 is given by			
		$\frac{n \times (\text{sample standard deviation})^2}{n-1}$	M1		use of; accept omission of ²
		$=\frac{100\times2.97^2}{99} \text{ or } \frac{100\times8.82(09)}{99}$	A1		CAO; OE
		= 8.91		2	AG
	(b)	$99\% \Rightarrow z = 2.5758$	B1		AWFW 2.57 to 2.58
		CI for μ is $\bar{x} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		use of; must have \sqrt{n} with $n > 1$
		$\therefore 331.28 \pm 2.5758 \times \frac{\sqrt{8.91}}{\sqrt{100}}$	A1√		ft on z only
		$\therefore 331.28 \pm 0.77$			
		:. (330.51, 332.05)	A1	4	AWRT (dep on A1√)
	(c)	Large sample size	B1		accept any $n \ge 25$
		so			
		mean (approximately) normally distributed using Central Limit Theorem	B1	2	normal or CLT
		Total		8	

Q	Solution	Marks	Total	Comments
4(a)(i)	$X \sim N(\mu_X 3^2)$			
	$P(X < 1010) = P\left(Z < \frac{1010 - 1005}{3}\right) =$	M1		Standardising (1009.5, 1010 or 1010.5) with $(\sqrt{3}, 3 \text{ or } 3^2)$ and/or (1005 – 1010)
	P(Z < 1.67) =	A1		AWRT; ignore sign
	0.951 to 0.953	A1	3	AWFW; (0.95221)
(ii)	P(X < 1000) = 1%			
	$z_{0.01} = -2.3263$	B1		AWFW 2.32 to 2.33; ignore sign
	Also $z = \frac{1000 - \mu_X}{3}$	M1		Standardising 1000 with μ_X and 3 but allow ($\mu_X - 1000$)
	Thus $\frac{1000-\mu_X}{3} = -2.3263$	m 1		Equating z-value to z-term; not using 0.01, 0.99 or $ 1-z $
	Thus $\mu_X = 1007$	A1	4	AWRT
(b)	$\overline{y} = \frac{16136}{16} = 1008.5$	B1		CAO
	95% implies $z = 1.96$	B1		CAO
	CI for μ is $\overline{y} \pm z \times \frac{\sigma}{\sqrt{n}}$ Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$	M1		Use of; must have \sqrt{n} with $n > 1$ M0 for attempt at using s
	Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$	A1√		$$ on \overline{y} and z only
	Thus (1007, 1010)	Aldep	5	AWRT; dependent upon fully correct expression for CI
	Total		12	

	Total		10	
	Probability = $0.01 \times 0.10 = 0.001$	A1	2	CAO
(c)	Deskelikter = 0.01×0.10	M1		Allow (1-(0.99×0.90))
(b)	Probability = 0.01	B1	1	CAO
(ii)	Volume, X normally distributed	E1	1	
	∴ (500.28, 502.32)	A1	6	AWRT
	∴ 501.3±1.02			
	$\therefore 501.3 \pm 2.5758 \times \frac{(2.8 \text{ or } \sqrt{7.84})}{\sqrt{50}}$	A1√		ft on \overline{x} , s and z not on n
	CI for μ is: $\overline{x} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		Use of ; must have \sqrt{n} with $n > 1$
	$99\% \Rightarrow z = 2.5758$	B1		AWFW 2.57 to 2.58
	$[v = 7.68 \text{ or } \sqrt{v} = 2.77]$			AWRT
	Variance, $s^2 = \frac{384.16}{49} = 7.84$ or $s = 2.8$	B1		САО
	Mean, $\bar{x} = \frac{25065}{50} = 501.3$	B1		САО
7 (a)(i)	$\sum x = 25065 \qquad \sum (x - \overline{x})^2 = 384.16$			

Q	Solution	Marks	Total	Comments
5(a)	$Var(T) = s^2 = \frac{279.8929}{49} = 5.71$	В1		awrt (5.7121)
	$\operatorname{SE}(\overline{T}) = \sqrt{\frac{\operatorname{Var}(T)}{50}}$	M1		use of
	= 0.338	A1	3	Awrt [cannot be scored in part (b)(i)]
(b)(i)	$\bar{t} = \frac{143.5}{50} = 2.87$	B1		cao; can be scored in part (a)
	99% implies $z = 2.5758$	B1		awfw 2.57 to 2.58
	CI for μ is: $\overline{t} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		use of; must have \sqrt{n} with $n > 1$ or equivalent
	or $\bar{t} \pm z \times SE(\bar{t})$			or \sqrt{n} in $SE(\bar{t})$
	Thus: 2.87 \pm (2.5758 × 0.338)	A1√		$$ on \overline{t} , z and SE $(\overline{t}) > 0$; accept $\overline{t} = 143.5$ only if clearly stated
	Thus: (2.00, 3.74)	A1	5	awrt; accept 2 dependent on ÷ by 49 in part (a) unless subsequently corrected
(ii)	Evidence to suggest that $\mu = 3.5$ as 3.5 inside CI	B1√ B1√	2	on part (b)(i) clearly stated; $$ on part (b)(i)
(c)	Now evidence to suggest that μ has changed/increased from 3.5			
	(as 3.5 outside/below CI)	B1		reason not required
	Also evidence (to suggest μ has increased during three months)			
	as CIs do not overlap	B1	2	reason required
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$\hat{\mu} = \bar{x} = \frac{1}{n} \sum x = \frac{1040}{100} = 10.4$	B1		САО
	$\hat{\mu} = \bar{x} = \frac{1}{n} \sum x = \frac{1040}{100} = 10.4$ $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$	M1		use of; or use of $\frac{n}{n-1}v$ or v
	$=\frac{1}{99}\left(11102.11-\frac{1040^2}{100}\right)=2.89$	A1	3	CAO ($v = 2.8611$) ($\sqrt{v} = 1.69148$)
(b)	CI: $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$	M1		Use of with $n > 1$
	$99\% \Rightarrow z = 2.5758$	B1		AWFW 2.57 to 2.58
	∴ $10.4 \pm 2.5758 \times \frac{1.7}{\sqrt{100}}$ ∴ 10.4 ± 0.44	A1√		$$ on (a) providing $\overline{x} \neq 1040$, & on z, not on n
	i.e. (9.96, 10.8)	Aldep	4	AWRT; dependent on ÷ by 99 in part (a) unless subsequently corrected
(c)	Length, $X \sim$ Normal	E1	1	
(d)	Require to subtract 0.2 from each CL ∴ (9.76, 10.6)	M1 A1√	2	subtract/add 0.2 from/to each CL $$ on (b); AWRT
	Total		10	

Q	Solution	Marks	Total	Comments
1(a)(i)	Time, $X \sim N(12, 2.5^2)$			
	$P(X < 15) = P(Z < \frac{15 - 12}{2.5})$	M1		standardising (14.5, 15 or 15.5) with $(\sqrt{2.5}, 2.5 \text{ or } 2.5^2)$ and/or $(12 - x)$
	P(Z < 1.2) = 0.885	A1	2	AWRT (0.88493)
(ii)	P(10 < X < 15) = (i) - P(X < 10) = 0.88493 - P(Z < 0.8)	M1		OE
	$= 0.88493 - (1\Phi(0.8))$	M1		area change
	= 0.88493 - (1 - 0.78814) = 0.673	A1	3	AWRT (0.67307)
(b)(i)	$\overline{y} = \frac{835.0}{50} = 16.7$	В1		САО
	$s^2 = \frac{533.61}{49} = 10.89$ or $s = 3.3$			CAO; either
	$v = \frac{533.61}{50} = 10.6722$ or $\sqrt{v} = 3.2668$	В1		AWRT 10.67 or AWRT 3.27
	$99\% \Longrightarrow z = 2.5758$	B1		AWFW 2.57 to 2.58
	CI for μ is $\overline{y} \pm z \times \frac{\left(s \text{ or } \sqrt{v}\right)}{\sqrt{n}}$	M1		use of; must have $(\div \sqrt{n})$ with $n \ge 1$
	Thus: 16.7 $\pm 2.5758 \times \frac{(3.3 \text{ or } 3.27)}{\sqrt{50}}$	A1√		$$ on \overline{y} , z, (s or \sqrt{v}); not on n
	Thus: (15.5, 17.9)	A1	6	AWRT; dependent on ÷ 49 for variance unless subsequently corrected
(ii)	Adding 25% to 12 gives 15 Since 15 is outside/below CI	B1 E1√	2	CAO; seen somewhere $$ on (b)(i); must use 15
	Mustafa's suspicion is supported Total	B1√	3 14	on (b)(i); must use 15
	1 otal		14	