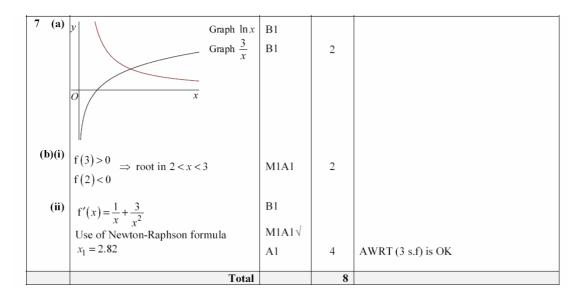
Pure Core 3 Past Paper Questions Pack B: Mark Scheme

Taken from MAP2

June 2001

Q	Solution	Marks	Total	Comments
1(a)	$3e^{2x}\cos 3x + 2e^{2x}\sin 3x$	M1		Product rule
		A1A1	3	
(b)	. (. 2 .)4	M1		2 1 (2 2 1)4
	$20x(2x^2+1)^4$	M1	2	for $kx(2x^2+1)^4$
		A1		
	Total		5	



Q	Solution	Marks	Total	Comments
8 (a)	$Area = \int_0^{\pi} (x + \sin x) dx$	M1		
	-0			
	$= \left[\frac{x^2}{2} - \cos x\right]_0^{\pi}$	A1		
	$= \left[\frac{\pi^2}{2} + 1\right] - \left(-1\right)$	M1		for correct use of limits
	$=\frac{\pi^2+4}{2}$ or similar	A1	4	
(b)(i)	$\int_0^\pi x \sin x dx = -x \cos x + \int \cos x dx$	M1A1		
	$= \left[-x\cos x + \sin x \right]_0^{\pi}$	A 1√		
	$=\pi-0$			
	$=\pi$	A1	4	AG
(ii)	$\int_0^{\pi} \sin^2 x \mathrm{d}x$			
	Double angle	M1		
	$= \frac{1}{2} \int 1 - \cos 2x \mathrm{d}x$	A1		
	$=\frac{1}{2}\left[x-\frac{\sin 2x}{2}\right]_0^{\pi}$	A 1√		
	$=\frac{\pi}{2}$	A1	4	AG
(c)	$V = \pi \int_0^\pi (x + \sin x)^2 \mathrm{d}x$	M1		
	$= \pi \int_0^{\pi} (x^2 + 2x \sin x + \sin^2 x) dx$			
	$= \pi \left[\frac{x^3}{3} \right]_0^{\pi} + (2\pi \times \pi) + \left(\pi \times \frac{\pi}{2} \right)$	A 1√		
	= 57.1	A1	3	AWRT (3 s.f)
	Total		15	

January 2002

Q	Solution	Marks	Total	Comments
3	$y' = \frac{\cos x + (2+x)\sin x}{\cos^2 x}$ $x = 0, y' = 1$ $x = 0, y = 2$	M1A1 A1F B1		Product rule acceptable $\frac{\cos x - (2+x)(-\sin x)}{\cos^2 x}$ M1A1 If simplified incorrectly M1A0
	Tangent: $\frac{y-2}{x} = 1$ $y = 2 + x$	m1A1F	6	f.t. non-zero / non-infinite gradient m1 depends on first M1
	Total		6	

Q	Solution	Marks	Total	Comments
7 (a)	$\frac{(2+x)+(2-x)}{4-x^2}$			
	$4-x^2$	M1		
	A = 4	A1	2	
(b)	$V = \pi \int_0^1 \frac{\mathrm{d}x}{4 - x^2}$	M1		Condone omission of limits here
	$= \frac{\pi}{4} \int_0^1 \frac{1}{2-x} + \frac{1}{2+x} dx$	A1F		f.t. (a) – their A
	$= \frac{\pi}{4} \left[-\ln 2 - x + \ln 2 + x \right]_0^1$	B1FB1F		Award for log integrals, ignore constant A
	$= \frac{\pi}{4} \left[\ln \left \frac{2+x}{2-x} \right \right]_0^1$	M1		Correct use of limits
	$=\frac{\pi}{4}\left[-\ln 3 - \ln 1\right]$	A1	6	
	$=\frac{\pi}{4}\ln 3$			AG
(c)(i)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta$	B1		
	$\int \frac{2\cos\theta}{\sqrt{4-4\sin^2\theta}} (\mathrm{d}\theta)$	M1		Subs: any form ignore limits for M1/ignore omission of $d\theta$
	$=\theta+c$	A1		
	$=\sin^{-1}\left(\frac{x}{2}\right)+c$	A1	4	
(ii)	$Area = \left[\sin^{-1}\left(\frac{x}{2}\right)\right]_0^1$	M1		or equivalent with θ
	$= \frac{\pi}{6} = \frac{0.524}{0.523}$	A1	2	
	Total		14	

June 2002

Q	Solution	Marks	Total	Comments
4	$V = \pi \int_{1}^{2} \left(x - \frac{1}{x} \right)^{2} dx$	M1		for $\pi \int \left(x - \frac{1}{x}\right)^2 dx$ form
		A1		Condone omission of limits and dx Correct form and limits, incl. dx (limits may be seen or implied later)
	$= \pi \int_{1}^{2} x^{2} - 2 + \frac{1}{x^{2}} dx$	A1		for correct expansion
	$=\pi\bigg[\frac{x^3}{3}-2x-\frac{1}{x}\bigg]_1^2$	B1√ M1		for integrating above for substitution and correct use of limits
	$=\frac{5\pi}{6}$	A1	(6)	CAO. Must be exact.
	Total		(6)	
5(a)(i)	$y' = 3x \sec^2 3x + \tan 3x$	M1A1A1	(3)	M1 for product rule. A1 each correct term
(ii)	$y = \frac{\sin x}{x}$			
	$y' = \frac{x \cos x - \sin x}{x^2}$	M1A1A1	(3)	M1 for quotient rule-ignore subsequent working A1 numerator A1 fully correct
				Use of product rule: $x^{-1}\cos x - x^{-2}\sin x$ (or better) M1A1A1
(b)	$\int_{8}^{\pi} x \sin 2x \mathrm{d}x$			
	$= \frac{-x\cos 2x}{2} - \iint \left(\frac{-\cos 2x}{2}\right) dx$	M1A1A1		M1 for good attempt at 'parts' A1 each correct term
	$= \left[\frac{-x\cos 2x}{2} + \frac{\sin 2x}{4} \right]_0^{\frac{\pi}{8}}$	Al√		Correctly integrating 2 nd term Condone omission of limits
	$= \text{use of } \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$	Bl		or use of $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$
	= to solution (AG)	A1	(6)	
	Total		(12)	

January 2003

2	(a)	$I_1 = [\ln(2+u)]_0^6$ = \ln 8 - \ln 2 = \ln 4	M1 A1 A1F	3	ft if $n = integer$
	(b)	dx = 2udu	M1		
		$I_2 = \int_0^6 \frac{2u}{u(2+u)} du$ = 2 I ₁ = 2 ln (u + 2)	B1 A1		Limits Integrand
		$= 2 I_1 = 2 \ln (u + 2)$	A1F		Need $I_2 = kI_1, k \neq 1$.
		= ln 16	A1F	5	ft if $m = integer$
		Total		8	

5	(a)				Alternative
		Either $A\left(1, \frac{\pi}{2}\right)$ or $A\left(1, 90^{\circ}\right)$	В1		x - coords ± 1 B1
		$B\left(-1, -\frac{\pi}{2}\right) \text{ or } B\left(-1, -90^{\circ}\right)$	В1	2	y - coords $\pm \frac{\pi}{2}$ or $\pm 90^{\circ}$ B1
	(b)	Use of $x = 0.1, 0.3, 0.5, 0.7, 0.9$	M1		
		y-values: 0.1002	M1		sin ⁻¹ (their x-values) radians
		0.3047	m1		$\sum y$ attempted (radians)
		0.5236			Accept AWRT these
		0.7754			
		1.1198			
		$I = 0.2 \times \text{Sum of } y\text{-values}$	M1		$0.2 \times \sum$ their y – values (even if degrees used)
		= 0.565	A 1	5	CAO
		Total		7	

June 2003

Q	Solution	Marks	Total	Comments
1	$\int e^{2x} dx = \frac{1}{2} e^{2x} (+c)$			
	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2x & 1 & 2x \end{bmatrix}$	M1		attempt at integration by parts
	$\int_0^{\frac{1}{2}} x e^{2x} dx = \left[\frac{x e^{2x}}{2} \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \frac{e^{2x}}{2} dx$	A1		for $\frac{1}{2}xe^{2x}$
	$=\frac{1}{4}e - \left[\frac{e^{2x}}{4}\right]_0^{\frac{1}{2}}$	A1		for $\frac{1}{4}e^{2x}$
		m1		substitution of both limits attempted
	$= \frac{1}{4}e - \frac{1}{4}e + \frac{1}{4} = \frac{1}{4}$	A1	5	(CAO)
	Total		5	

5 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin x - 2x\cos x}{\sin^2 x}$	M1		use of quotient rule
	$dx = \sin^2 x$	A1		for numerator correct
		A1	3	for denominator correct
(b)(i)	$At P, \frac{dy}{dx} = 2$	B1F		From substitution of $x = \frac{\pi}{2}$ in answer to part (a)
	At P , $\frac{dy}{dx} = 2$ $T_P: y - \pi = 2\left(x - \frac{\pi}{2}\right)$ y = 2x	M1		or use of $y = mx + c$ to show $c = 0$ when $m = 2$
	y = 2x	A1	3	CAO
(ii)	Gradient of $N_P = -\frac{1}{2}$	B1F		
	$N_P: y - \pi = -\frac{1}{2} \left(x - \frac{\pi}{2} \right)$	M1		or use of $y = mx + c$ for their $m \neq 2$
	$y = -\frac{1}{2}x + \frac{5\pi}{4}$	A1F	3	allow $y = -\frac{1}{2}x + 3.927$ or $4y + 2x = 5\pi$
	Tital			$[\mathbf{or} + y + 2x = 5\pi]$
	Total		9	

January 2004

Q	Solution	Marks	Total	Comments
4 (a)	<i>y</i> ()			
	let $u = x^2 + 9$ then $\frac{du}{dx} = 2x$			
	and $y = \ln u$: $\frac{dy}{du} = \frac{1}{u} = \frac{1}{x^2 + 9}$	M1		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x^2 + 9} \times 2x$	M1		Use of chain rule
	$=\frac{2x}{x^2+9}$	A1	3	CAO
(b)	$\int_{0}^{3} \frac{x}{x^2 + 9} dx = \left[\frac{1}{2} \ln(x^2 + 9) \right]_{0}^{3}$	M1		
	$=\frac{1}{2}\ln 18 - \frac{1}{2}\ln 9$	A1		
	$=\frac{1}{2}\ln 2$	A1	3	AG
(c)	$\int_{0}^{3} \frac{x+1}{x^{2}+9} dx = \int_{0}^{3} \frac{x}{x^{2}+9} dx + \int_{0}^{3} \frac{1}{x^{2}+9} dx$	M1		Attempted
	$= \frac{1}{2} \ln 2 + \frac{1}{3} \left[\tan^{-1} \left(\frac{x}{3} \right) \right]_0^3$	A1		
	$= = \frac{1}{2} \ln 2 + \frac{1}{3} \left[\tan^{-1} (-1) - \tan^{-1} (0) \right]$	M1		Limits used in correct expression
	$= \frac{1}{2} \ln 2 + \frac{\pi}{12}$	A1	4	AG
	Total		10	

0	Solution	Marks	Total	Comments
6 (a)		Marks	Totai	Comments
	f(2) = -0.091	M1		
	Change of sign \Rightarrow			
	\therefore root in the interval $1 \le x \le 2$	A1	2	
(b)(i)	$f'(x) = \cos x - \frac{1}{2}$	B1	1	
	2			
(ii)	$x_{n+1} = x_n - \frac{f(x)}{f'(x_n)} = x_n - \frac{\sin x_n - \frac{1}{2}x_n}{\cos x_n - \frac{1}{2}}$	M1		N-R formula used
	$x_{n+1} = x_n - \frac{f(x)}{f'(x)} = x_n - \frac{2}{1}$	IVII		N-IX Tormura useu
	$\cos x_n - \frac{1}{2}$			
	1			
	$x_0 = 2$ \therefore $x_1 = 2 - \frac{\sin 2 - 1}{\sin 2}$	m1		Radians used in correct formula
	$x_0 = 2$ \therefore $x_1 = 2 - \frac{\sin 2 - 1}{\cos 2 - \frac{1}{2}}$			
	2			
	$x_1 = 1.901 \approx 1.9$	A1	3	AG
(c)(i)	1.			
	$\sin^2 x = \frac{1}{2} \left(1 - \cos 2x \right)$			
	$\therefore \int \sin^2 x dx = \frac{1}{2} \int (1 - \cos 2x) dx$	M1		
	2 3			
	1 1.	A1	2	AG
	$=\frac{1}{2}x - \frac{1}{4}\sin 2x + c$		_	
(")	10 5 719			
(ii)	$\int_{0}^{1.9} \sin^2 x = \left[\frac{1}{2} x - \frac{1}{4} \sin 2x \right]_{0}^{1.9} = 1.10$	B1	1	
	$\begin{bmatrix} J \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & J_0 \end{bmatrix}$			
(d)	Volume of solid formed = $V_1 - V_2$	M1		
	Volume of solid formed $= v_1 - v_2$			
	1.90	M1		for V_1 (3.46507) allow 3.46 (1.10× π)
	$V_1 = \pi \int_0^{1.90} \sin^2 x \mathrm{d}x$			
	$=\pi \times 1.10$			
	(= 3.47)			
	$V_2 = \frac{1}{3} \times \pi \times (0.95)^2 \times 1.90$ or $\pi \int_{0}^{1.9} \left(\frac{1}{2}x\right)^2 dx$	M1		for V_2
	(= 1.796)			
	. Volume of calld formed = 1.67	A1		(1.66938) allow 1.66
	∴ Volume of solid formed = 1.67	A1	5	
	Volume = 1.7 (2sf)	A1	3	
	Total		14	

June 2004

Q	Solution	Marks	Total	Comments
3(a)	π			
	$\int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{d}x$			
	0			
	$= x \sin x - \int \sin x dx$	M1 M1		
	J			
	$= \left\{ x \sin x + \cos x \right\}_0^{\frac{\pi}{2}}$	A1		
		M1		Radians only
	$=\frac{\pi}{2}-1$	A1	5	0.570 to 0.571
a.a.	2 . 4 . 4 . 2 . 1	3.61		
(b)(i)	$t = x^2 + 4 \Rightarrow dt = 2x dx$	M1		correct
	$t = x^{2} + 4 \Rightarrow dt = 2x dx$ $\therefore \int \frac{2x dx}{\sqrt{x^{2} + 4}} = \int \frac{dt}{\sqrt{t}}$	A1	2	AG
	$\sqrt{x^2+4}$			
	2 2 4 8 1			
(ii)	$\int \frac{2x dx}{\sqrt{2}} = \int t^{-\frac{1}{2}} dt$			
	$0\sqrt{x^2+4}$			
	$\int_{0}^{2} \frac{2x dx}{\sqrt{x^2 + 4}} = \int_{4}^{8} t^{-\frac{1}{2}} dt$ $\left[2\sqrt{t}\right] \text{or} \left[2\sqrt{x^2 + 4}\right]$	M1		Integration attempted
	[2 1/]01 [2 1/ 7 +]	A1		correct
	$=2\sqrt{8}-2\sqrt{4}$	M1		attempt at correct limits seen
	$=2(2\sqrt{2})-4$			
	$=4(\sqrt{2}-1)$	A1	4	AG (AWRT 1.7)
	Total		11	

4(a)(i) $\frac{dy}{dx} = e^x \times 2\cos 2x + e^x \times \sin 2x$ M1 A1A1 3 Use of product rule A1 for each part correct M1 $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ is $y = 2x$ A1ft 2 (b) $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$ A1ft 2 Use of $m_1 \times m_2 = -1$ (-0.216) When $x = \pi$, $y = 0$ B1 $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\Rightarrow 4 \text{ AG (any correct form)}$	Q	Solution	Marks	Total	Comments
(ii) $\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ $\text{is } y = 2x$ Alft 2 (b) $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$ $\therefore \text{ gradient of normal at } x = \pi \text{ is } -\frac{1}{2e^{\pi}}$ When $x = \pi, y = 0$ $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}}(x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ Al Al for each part correct M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal AG (any correct form)				1 Ota1	
(ii) $\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ $\text{is } y = 2x$ Alft 2 (b) $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$ $\therefore \text{ gradient of normal at } x = \pi \text{ is } -\frac{1}{2e^{\pi}}$ When $x = \pi$, $y = 0$ $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}}(x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\Rightarrow 2e^{\pi}y + x = \pi$ A1 4 AG (any correct form)	4(a)(i)	$\frac{dy}{dx} = e^x \times 2\cos 2x + e^x \times \sin 2x$		2	
$\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ $\text{is } y = 2x$ A1ft 2 $\therefore \text{ gradient of normal at } x = \pi \text{ is } -\frac{1}{2e^{\pi}}$ $\text{when } x = \pi, y = 0$ $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ A1 M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\text{on their gradient of normal}$ $A3$ $A4$ AG (any correct form)		dx	AlAl	3	A1 for each part correct
$\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ $\text{is } y = 2x$ A1ft 2 $\therefore \text{ gradient of normal at } x = \pi \text{ is } -\frac{1}{2e^{\pi}}$ $\text{when } x = \pi, y = 0$ $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ A1 M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\text{on their gradient of normal}$ $A3$ $A4$ AG (any correct form)					
$\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$ $\text{is } y = 2x$ A1ft 2 $\therefore \text{ gradient of normal at } x = \pi \text{ is } -\frac{1}{2e^{\pi}}$ $\text{when } x = \pi, y = 0$ $\therefore \text{ equation of normal at } (\pi, 0) \text{ is given by}$ $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ A1 M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\text{on their gradient of normal}$ $A3$ $A4$ AG (any correct form)	(;;)	• 1			
	(11)	$\frac{\mathrm{d}y}{\mathrm{d}y} = 2$			
is $y = 2x$ Alft 2		$\left dx \right _{x=0}$	M1		
(b) $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$ \therefore gradient of normal at $x = \pi$ is $-\frac{1}{2e^{\pi}}$ when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}}(x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ A1 A1ft 2 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal A1 AG (any correct form)		$\therefore y = mx \Rightarrow \text{ equation of tangent at } (0, 0)$			
(b) $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$ \therefore gradient of normal at $x=\pi$ is $-\frac{1}{2e^{\pi}}$ When $x=\pi$, $y=0$ \therefore equation of normal at $(\pi,0)$ is given by $y=-\frac{1}{2e^{\pi}}(x-\pi)$ $\Rightarrow 2e^{\pi}y+x=\pi$ M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal A1 AG (any correct form)		is $y = 2x$			
∴ gradient of normal at $x = \pi$ is $-\frac{1}{2e^{\pi}}$ M1 When $x = \pi$, $y = 0$ ∴ equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $\text{on their gradient of normal}$	(b)		Alft	2	
∴ gradient of normal at $x = \pi$ is $-\frac{1}{2e^{\pi}}$ M1 When $x = \pi$, $y = 0$ ∴ equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ M1 Use of $m_1 \times m_2 = -1$ (-0.216) on their gradient of normal $A1$ AG (any correct form)	(b)	$\frac{\mathrm{d}y}{\mathrm{d}y} = 2\mathrm{e}^{\pi}$			
when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ A1 M1ft on their gradient of normal AG (any correct form)		$\left dx \right _{x=\pi}$			
when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ A1 M1ft on their gradient of normal AG (any correct form)					
when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ A1 M1ft on their gradient of normal AG (any correct form)		\therefore gradient of normal at $x = \pi$ is $-\frac{1}{}$	3.61		Har of m Vm = 1
when $x = \pi$, $y = 0$ \therefore equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi}y + x = \pi$ A1 AG (any correct form)		2e ^π	MI		
∴ equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ M1ft on their gradient of normal $A1$ AG (any correct form)		when y = 7, y = 0	R 1		(-0.216)
$y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ M1ft on their gradient of normal $A1 4 AG \text{ (any correct form)}$		when $x = n$, $y = 0$	ы		
$y = -\frac{1}{2e^{\pi}} (x - \pi)$ $\Rightarrow 2e^{\pi} y + x = \pi$ M1ft on their gradient of normal $A1 4 AG \text{ (any correct form)}$		\therefore equation of normal at $(\pi, 0)$ is given by			
$\Rightarrow 2e^{\pi}y + x = \pi$ A1 4 AG (any correct form)					
$\Rightarrow 2e^{\pi}y + x = \pi$ A1 4 AG (any correct form)		$y = -\frac{1}{2e^{\pi}} (x - \pi)$	M1ft		on their gradient of normal
		20	Λ1	4	AG (any correct form)
10191		32e y + x = h Total	AI	9	AG (any correct form)

Q	Solution	Marks	Total	Comments
5(a)	$f(x) = x^3 - 15$			
	f(2) = -7 < 0	В1		values
	f(3) = 12 > 0	E1	2	change of sign
	\therefore root in the interval [2,3]			
(b)(i)	$x = \frac{2}{3}x + \frac{5}{x^2}$			
(**)(*)	$x = \frac{1}{3}x + \frac{1}{x^2}$ $(x^2) \rightarrow 3x^3 - 2x^3 + 15$	Mi		
	$(\times 3x^2) \Rightarrow 3x^3 = 2x^3 + 15$ $x^3 - 15 = 0$	M1	_	
	x - 15 = 0	A1	2	AG
(ii)	$x_{n+1} = \frac{2}{3}x_n + \frac{5}{x_n^2}$			
	using $x_1 = 3$,	M1		
	$x_2 = 2.555556$	A1		
	$x_3 = 2.469299$	A1√		on their x_2
	$x_4 = 2.466216$	A1√	4	2.466215932
(iii)				
	$y = x$ $x_3 \qquad x_2 \qquad x_1$	B2	2	B1 for staircase B1 for convergence
(iv)	3√15	В1	1	
	Total		11	