MATHEMATICS

MPC3

Unit Pure Core 3

Friday 5 June $2009 \quad 1.30 \mathrm{pm}$ to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) The curve with equation

$$
y=\frac{\cos x}{2 x+1}, \quad x>-\frac{1}{2}
$$

intersects the line $y=\frac{1}{2}$ at the point where $x=\alpha$.
(i) Show that α lies between 0 and $\frac{\pi}{2}$.
(ii) Show that the equation $\frac{\cos x}{2 x+1}=\frac{1}{2}$ can be rearranged into the form

$$
\begin{equation*}
x=\cos x-\frac{1}{2} \tag{1mark}
\end{equation*}
$$

(iii) Use the iteration $x_{n+1}=\cos x_{n}-\frac{1}{2}$ with $x_{1}=0$ to find x_{3}, giving your answer to three decimal places.
(b) (i) Given that $y=\frac{\cos x}{2 x+1}$, use the quotient rule to find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. (3 marks)
(ii) Hence find the gradient of the normal to the curve $y=\frac{\cos x}{2 x+1}$ at the point on the curve where $x=0$. (2 marks)

2 The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=\sqrt{2 x+5}, & \text { for real values of } x, x \geqslant-2.5 \\
\mathrm{~g}(x)=\frac{1}{4 x+1}, & \text { for real values of } x, x \neq-0.25
\end{array}
$$

(a) Find the range of f .
(b) The inverse of f is f^{-1}.
(i) Find $\mathrm{f}^{-1}(x)$.
(ii) State the domain of f^{-1}.
(c) The composite function fg is denoted by h .
(i) Find an expression for $\mathrm{h}(x)$.
(ii) Solve the equation $\mathrm{h}(x)=3$.

3 (a) Solve the equation $\tan x=-\frac{1}{3}$, giving all the values of x in the interval $0<x<2 \pi$ in radians to two decimal places.
(b) Show that the equation

$$
3 \sec ^{2} x=5(\tan x+1)
$$

can be written in the form $3 \tan ^{2} x-5 \tan x-2=0$.
(c) Hence, or otherwise, solve the equation

$$
3 \sec ^{2} x=5(\tan x+1)
$$

giving all the values of x in the interval $0<x<2 \pi$ in radians to two decimal places.

4 (a) Sketch the graph of $y=\left|50-x^{2}\right|$, indicating the coordinates of the point where the graph crosses the y-axis.
(b) Solve the equation $\left|50-x^{2}\right|=14$.
(c) Hence, or otherwise, solve the inequality $\left|50-x^{2}\right|>14$.
(d) Describe a sequence of two geometrical transformations that maps the graph of $y=x^{2}$ onto the graph of $y=50-x^{2}$.

5 (a) Given that $2 \ln x=5$, find the exact value of x.
(b) Solve the equation

$$
2 \ln x+\frac{15}{\ln x}=11
$$

giving your answers as exact values of x.

6 The diagram shows the curve with equation $y=\sqrt{100-4 x^{2}}$, where $x \geqslant 0$.

(a) Calculate the volume of the solid generated when the region bounded by the curve shown above and the coordinate axes is rotated through 360° about the \boldsymbol{y}-axis, giving your answer in terms of π.
(b) Use the mid-ordinate rule with five strips of equal width to find an estimate for $\int_{0}^{5} \sqrt{100-4 x^{2}} \mathrm{~d} x$, giving your answer to three significant figures.
(c) The point P on the curve has coordinates $(3,8)$.
(i) Find the gradient of the curve $y=\sqrt{100-4 x^{2}}$ at the point P.
(ii) Hence show that the equation of the tangent to the curve at the point P can be written as $2 y+3 x=25$.
(d) The shaded regions on the diagram below are bounded by the curve, the tangent at P and the coordinate axes.

Use your answers to part (b) and part (c)(ii) to find an approximate value for the total area of the shaded regions. Give your answer to three significant figures. (5 marks)

7 (a) Use integration by parts to find $\int(t-1) \ln t \mathrm{~d} t$. (4 marks)
(b) Use the substitution $t=2 x+1$ to show that $\int 4 x \ln (2 x+1) \mathrm{d} x$ can be written as $\int(t-1) \ln t \mathrm{~d} t$ (3 marks)
(c) Hence find the exact value of $\int_{0}^{1} 4 x \ln (2 x+1) \mathrm{d} x$. (3 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

